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ABSTRACT

This paper describes noise phenomena in oscillators
with two degrees of freedom, sustaining two-frequency
asynchronous oscillations. The oscillator is comprised
of two parallel high-Q-resonant. RLC circuits
connected in series to an active voltage-controlled one-
port device with a symmetric volt-ampere characteristic
having a nonlinearly described by a function arctg(x).
The oscillator under analysis is isochronous, as it uses a
purely resistive active device and has no additional
phase shifts in the positive feedback loops. Phase noise
at the two frequencies due to white noise sources is
uncorrelated, while amplitude noise shows some
mutual correlation. The main features of the noise
characteristics arise due to the interaction of the two
asynchronous oscillations via the common bias.

1. INTRODUCTION

Asynchronous oscillation in dynamic systems with
two degrees of freedom is a classical problem of
nonlinear oscillation theory [1]. Aside from pure
scientific interest, such oscillations are worthy of our
attention, since they can be used to improve frequency
stability of precision quartz oscillators [2-7] and can
cause distortions in microwave and other sources [8].

A typical arrangement of the oscillator under
analysis (Fig. 1) is comprised of two parallel high-Q-
resonant RLC circuits connected in series to an active
voltage-controlled non-linear one-port device. If the
tank circuits resonant frequencies v; and v, are
incommensurable and sufficiently separated, the total
voltage waveform across the active device (AD) in a
steady-state regime u(t) consists of a bias voltage u, and
one or two fundamental voltage components u;(t) and

ux(t):
u(t) =u; + up +u, = U cos(Znvt + ¢;) +
U, cos(2rvat + ¢,) + u,,. ()]
In general, the dc term u, is not necessarily

identical to the applied bias voltage Uy since there may
be some rectification of the rf voitage components.
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Figure 1. An equivalent network of an oscillator

sustaining two-frequency asynchironous
oscillations with added noise sources.

The kind of oscillation which actually occurs in the
network depends, first of all. on the particular AD non-
linearity. Van der Pol came to the conclusion that
stable oscillation at two asynchronous frequencies
simultaneously could not occur if the AD volt-ampere
characteristic (VAC), i(u), was represented by a cubic
relation [1]. Instead, the device oscillates at either one
or the other frequency. depending on initial conditions.
It was soon was discovered that this result is only a
consequence of the specific form of VAC and that for
an appropriate VAC, simultaneous oscillation at two
frequencies is possible. Apparently. the first time this
was studied was by Chikhachev [9]. Twelve years later
Skinner [10] showed that for stable asynchronous
oscillations to occur, there must be at least a fifth-order
term in the power-series expansion of VAC, that is

iw) =a,+au+au’+au’ +an’+tau’. Q)
where the parallel resonant (antiresonant) inipedances
of the two tank circuits. R; and R,. be not too unequal.
However. as pointed out by Schaffner [11] and
Anisimov [9]. these conditions for oscillations are not
self-starting because the effective resistance of the
system is positive for small oscillations. A Sth-order
polynomial VAC. which lead to sharply exciled
asynchronous oscillations. can only have about the
same values for the stationary amplitudes U, and U-.
This restriction, however. does not apply if VAC



is represented by a 7th-order polynomial [8].

The common peculiarity of analysis in [8.9. 11} isa
suggestion that the AD output current responds to an
instantaneous value of the applied voltage while
parameters of the VAC and an operating point stay
unchanged. Disman and Edson {10] checked the last
condition and found that replacement of a constant bias
by an automatic one. when the bias is derived by
rectification of the rf voltage applied to AD. changes
the oscillator properties drastically. In particular. mild
excitation of stable asynchronous oscillations are now
possible. Additional publications in this area revealed
interesting details about asynchronous oscillations in
different cases but did not change the understanding.

2. STEADY STATE REGIMES

In contrast to other work. the AD described here has
a symmetric VAC, which in our opinion, is a better
match to many practical cases. A specific form of the
VAC nonlinearity is represented by the function

i(x) = A[(2/) arctg(x) + 1], ©)]

where x = C, x u is the normalized total instantaneous
voltage across the one-port AD, and C, is the
normalizing coefficient. The VAC chosen has odd
symmetry relative to the argument value x = 0.

The analysis is based on the method of symbolic
shortened equations (SSE method) developed by
Evtyanov [12]. The partial oscillations without noise
components are written as

w(t) = Urcos'Wi(t) = Ucos[2rvit + gu(t)]. 4)

Bearing in mind that Q;> »1 for resonators of
interest, the amplitudes U,,»(t) and the phases ¢,(t)
can be considered slowly varying functions of time.
This permits us to replace instantaneous values of
variables by their envelopes and thus to lower the order
of the initial differential equations. Using the SSE
method to derive simplified differential equations,
requires us to approximate the circuit impedance in the
vicinity of all operating frequencies and use the
expression obtained as differential operators acting on
the complex amplitudes Uy (t) = Ui(t) exp[¢w(t)].

The main equations describing behavior of the
oscillator can be obtained from its equivalent circuit in
Fig. 1. For single tank circuits, the approximated
impedances, Z, and Z,(p), have the form

Z;=RJ(1 + Tip). (%)
where R, = c% oy Q, is the parallel resonant impedance,

¢, is the coupling coefficient, p, = (L/CW)'? is the
characteristic impedance, Q is the loaded Q-factor,

Ty = 2Qu/oo is the resonator time constant. p = d/dt is
the differential operator with respect to time. k = 1. 2.
In a steady-state regime. p = jQ. where 2 = 2nf = © -
wqi is the angular offset frequency.

oo = 2nvee = (LCY'" is a self-resonant angular
frequency. and f = v - vy is the frequency shift-in hertz
with respect to the current frequency v and also a
Fourier frequency in the noise analysis.

The full set of the equations with the noise sources
consists of two equations describing the asynchronous
carriers. two equations for the frequency shifts 4 due
to noise and the relationship for the bias circuit

TeXy = (G Ry, = DX + I
da = L / InTy = 1 / G (X)X, Tyt (©6)

ToXo = Xpo =~ Xo = Ryply + Xipt (k=12)
where X, = C,xUy, Xoo = CoxUq is the normalized
values of partial oscillations and bias, Xo is the
constant part of the resuiting bias voltage X, Gy =
LiXe is the normalized averaged partial
transconductances, 1(X;,X2.Xy) is the amplitudes of
partial fundamental rf currents, and k = 1. 2.

The operating frequencies o, have no regular shifts
regarding ooy (d>k= o - oy = 0) since both partial
currents I,y are in-phase with the voltages Ui.

In Eq. (6) R, = CyxRy and T, arise from the
expression for bias impedance Z(p) = RJ/(1+pTy)
which describes the inertial properties of the bias
network.

Noise terms in (6) are represented by slowly varying
noise currents in vicinity of the operation frequencies

Lok (@) = (T + 31 50) = exp(ioy) )

where X, is the averaged low frequency noise voltage
arising from bias self-noise ey, and AD noise current.
It follows from (6) that in the steady-state regime

Gy X1\ X2. X0 )Gy = Gion = I/ FRy2. (8)

where FR;, = C, xGy x Ry are the partial regeneration
factors representing maximal small signal gain of the
partial positive feedback loops. Gu = 2A/rn is the
maximal small signal value of G, which is reached
when X=X, »=0.

The nonlinear functions Gy, (Xi . X, . Xo) define
all the main properties of the oscillator. The analysis is
based on computer simulation. We find that the
oscillator with a constant bias has in general. five
stationary points (Fig. 2). Points 2 and 3 describe stable
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one-frequency regimes while the three points 1. 4, and
5 corresponded to two-frequency solutions. The central
point 1 is stable but the biharmonic oscillation is not
self-starting (so called sharp excitation) since the
positive feedback loop

Figure 2. An example of symmetric joint steady-state
solutions.

gain is less than unity for small X; and X,. If exited,
the two-frequency oscillation can only have small
stationary amplitudes X, X, because the stable point
disappears when FR; and FR, differ too much. If FR, =
FR; = 3, a symmetric two-frequency regime can be
observed for | X, | e (1.7, 2.03) as in Fig, 3.

Figure 3. Evolution of the two-frequency oscillator
symimetric steady-state regimes with bias change.

In an oscillator with automatic biasing, U, depends
on a direct current Iy, which in turn, is a function of U,
and alternating voltages amplitudes. In a steady-state
regime the normalized bias is equal to

X0=X00-RanIo(X|,X2aX0)- (9)
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Fig. 4 illustrates a gradual transition from an
unstable to stable joint solution with R, growth. A
symmetric solution is unstable when R, = 0. still
unstable for Ry, < 2.8, and becomes stable if
2.8 < Ry, < 4.46. The range of mild excitation is
narrower and takes place within 2.8 <R,,, <3.6. If
Ry, > 3.6. in vicinity of the origin there is a zone where
regeneration is not sufficient to sustain oscillations.
The result is that the excitation is getting sharp. For
Ry, > 4.46 the joint solution completely vanishes.

For the chosen Xpo. Ry and FR, the joint solution
exists in some range of FR,. If FR, = 3 and Ry, = 10,
the stable simultaneous asynchronous oscillations exist
for FR; € (2.5. 3.36). For even larger FR; there is only
oscillation at frequency v,. If FR, < 2.5, the only
oscillation is at frequency v;.

5
X1

Figure 4. Symmetric steady-state regimes in the case of
FR, = FR, = 3, X = 0. and different bias resistors.

3. NOISE CHARACTERISTICS

The noise components Uft) and ¢t) arise in the
output signal as the oscillator reaction to primary noise
sources (Fig. 1). For simplicity consider the case of
fundamental d-correlated noise. Taking each particular
variable X as the sum of a steady value Xqy. and a
noise variation Xg_ using the SSE method. we obtain a
system of linear equations for the first approximation to
the disturbances

a;; —pT a2 a3 X1 -y
Ay a5, - pT, a3 x| Xep | =] =]
as; as a;—-pT, X0 = Xbo

10

The elements a; of the matrix (A) are first-order partial
derivatives of right hand side regular parts of equations



(6) with respect to the variables X;, X,. X, evaluated at

a
the stationary point. Thus. a3 = —(1+ Ry, Exi) :
Q

Oscillator noise depends on the specific form of

VAC. The graphs in Fig. 5-10, obtained for a mono-

frequency oscillator with a constant bias. allow us to
check our «arctg»-type VAC in this sense.

From (10) it follows that the power spectral density
of AM noise takes a form

Sy )
(G, -o))? +2nTG,f)*

Sa =

where o,(U) = 2I,/dU is the local first harmonic AD
transconductance unlike the averaged one G, = [;/U.
Random amplitude perturbations decay with a time
constant T, = T(1 - o/G,) which is regime dependent
(Fig. 5). For regime stability T, > 0. that is. G, > o).
Under this condition, o, can have any sign and value.

b 8 2 3

Figure 5. Dependence of the time constant for
amplitude noise on a regeneration factor.
The plots of AM noise mean square value

UZ(U)=——2=———5, and the fractional AM
f(U) TG, (G, o) | he fraction

noise U? /UZ in Fig. 6 demonstrate quite different
behavior with respect to FR.

norm
10

Figure 6. Mean squared AM noise and fractional
AM noise vs. regeneration factor.

PM noise is described by £(f) =S, (f) / 2GJUZ&”>.
Here S, (f) is the power spectral density of the quadratic
noise current component [, & = QT = 2QQ/w, = 2fQ/v,
is the extended tank circuit detuning at the Fourier
frequency f. This formula gives the same results as
Leeson’s formula for the amplifier input {13].

To the first approximation. S, = §; < L, The
dependence of PM noise on the regime calculated on
this basis is shown in Fig. 7. The larger FR the lower
the PM noise.
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Figure 7. Influence of the regeneration factor on
oscillator output PM noise spectral density.

So far our oscillator noise model is based on the
assumption of a linear time-invariant system. In reality.
any oscillator is a periodically time-varying system and
its time-varying nature must be taken into account to
permit accurate modeling of noise [14.15]. Periodic
nonstationarity of the noise process leads to unequal
correlation functions, and so power spectral densities of
the in-phase and orthogonal noise current components.
In general, there is some mutual correlation. The values
of possible AM and PM noise changes due to noise
cyclostationarity are illustrated in Fig.8 where we
defined [15]

AS, =(F, +F,)/F,. Af=(F, ~F,)/F,. (11

dB AS,, AL¢

Figure 8. Influence of the regeneration factor on
oscillator output phase noise spectral density.
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The variations in Fig. 8 do not exceed 12 to 4 dB. This
means, noise cyclostationarity can be neglected when
we calculate oscillator noise for the chosen VAC form.
In the biharmonic regime the second oscillation
influences the average current thus changing the initial
noise. However, the effects stipulated by noise
cyclostationarity remain the same order of magnitude
as in a mono-frequency case.

Consider now PM noise in the symmetric two-
frequency regime with FR, = FR; = FR. This leads to
Xa@ = Xe» Ine = Ii. The information on PM noise
regime dependence is represented in Fig. 9 where we
drew in logarithmic scale the direct to first harmonic
current ratio vs. FR. This ratio reproduces PM noise

behavior since | i< lo. The solid line characterizes the

two-frequency regime, and the marked one “-* the
mono- frequency regime.
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Figure 9. PM noise dependence on the
regeneration factor for an oscillator with
auto-biasing.

It follows that the symmetric two-frequency regime has
3.to.4 dB higher PM noise than the mono-frequency
one. This is because the second oscillation suppresses
the rf current more than the direct one.

AM noise in the two-frequency regime, as well in a
mono-frequency one, is influenced strongly with bias
circuitry inertiality described by the T\/T,, Ty/T; ratios.
According to Eq. (10), AM noise at each frequency
depends on the two partial in-phase rf noise
components and the noise associated with the bias.
Thus, AM noise at the two frequencies is partially
correlated.

4. CONCLUSION

Our investigation confirmed that the chosen
symmetric VAC allows us to reproduce all the basic
effects known earlier for two-frequency asynchronous
oscillations. Our results reveal the features of steady-
state regimes and noise in such oscillators.
Unfortunately, our analysis also predicts that the PM
noise is higher in a two-frequency regime than in the
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mono-frequency regime when the oscillator uses a
single AD operating in a symunetric mode.
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